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Abstract—In this work the nonlinear analysis of a drill string 
movement taking into account a complicating factor was studied. As 
a complicating factor is taken a frictional force arising between the 
string and the borehole. The resonance modes and its stability are 
investigated here. For that reason the amplitude-frequency 
characteristics of the first and the third harmonic resonance are 
constructed. The consideration of friction forces leads to a decrease 
in the amplitudes of transverse vibrations and to a weakening of 
resonance oscillations with a narrowing of the zone of dangerous 
frequencies. Qualitative and quantitative agreement of the stability 
zones of the resonance on the basic frequency with bifurcation zones 
on the resonant amplitude-frequency characteristics was also 
established. Obtained here responses determinate the instability zone 
of the basic resonance allows to avoid non-working resonance 
frequencies at the early stage of drilling wells. Modeling of 
resonance regimes of the drill string dynamics along with the 
analysis of its stability has a great importance for development of 
drilling equipment and improving its dynamic characteristics. 

 
Keywords – amplitude-frequency characteristic; finite 

deformation; frictional force; nonlinearity; resonance vibrations; 
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I.  INTRODUCTION 
A drill string is a part of the rotary drill rig used for 

mining oil and gas wells. During drilling, there are strong 
vibrations that damage drill pipes and strings and drilling 
equipment. Drill string vibration is one of the major causes 
for a deteriorated drilling performance, and if left untreated 
may result in a complete failure of the drilling process. It is 
well known that drill string vibrations may lead to fatigue 
failures and abrasive wear of tubulars, damage to the drill bit 
and the borehole wall. As a consequence, oil well drilling 
becomes inefficient and costly. On the other hand, 
measurements of these vibrations may provide valuable 
information about the drilling assembly and formation 
characteristics. Therefore, vibrations must be fully understood 
and their effects should be minimized in any approach to 
drilling optimization. Most studies of the drill string dynamics 
are directed to modeling and analysis of columns vibration, 
which leads to a loss of movement stability of drilling 
equipment and violation of their strength properties. Loss of 
stability of drill string rectilinear form leads to a curvature of 
wells, which is cause of their unfitness. Therefore, research on 
modeling of drill strings dynamics considering their 
deformation properties, taking into account the complicating 

factors and the influence of external disturbing forces have a 
scientific and practical interest. As a complicating factor is 
taken an inertia and damping forces, which are caused by the 
frictional forces arising between the string and the borehole, 
between the drilling tool and the borehole at longitudinal feed 
during drilling. Previously, the influence of external friction 
on the dynamic characteristics of the drill strings oscillations 
was studied [1]. It is established that friction qualitatively 
changes the shape of the transverse vibrations of the pipes. It 
was also found that the dynamic characteristics of the lateral 
oscillations of the column depend on the nature of the axial 
load. In [2], [3] linear problems of bending vibrations of the 
bottom structure of a rotating drill string under the action of 
friction forces are considered. The analysis is performed and 
the effect of the resistance forces on the oscillatory process is 
revealed. 

II. MATHEMATICAL MODEL 
Thus, during operation, the drill string, depending on its 

flexibility, is bent on several half-waves. At the same time, 
due to the elastic deformation force, it is pressed against the 
walls of the borehole, creating an additional frictional force 
against the movement of the cutting tool supply to the bottom. 
That is, there takes place an additional longitudinal force N∆  
in the rod. This force is proportional to the speed of 
movement of the drill string cross-section in planes xOz and 
yOz: 
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Here ε  is coefficient of friction, 
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 are feed speeds of the drill in planes 

xOz and yOz respectively. 
The movements ue , ve  are found as the difference 

between the initial length of the drill string l and the 
projections of their curved axes in the corresponding planes, 
and can be written as follows: 
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Giving an increment N∆  of the external compressive 
longitudinal force ( ),N z t , the following nonlinear dynamic 

model (3) considering the friction force was obtained. It 
describes the interaction of flexural vibrations of a drill string, 
which rotates with angular velocity ω , compressed by the 
longitudinal force ( ),N z t  and twisted by the moment ( )M t . 
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where ρ  is density, A  is cross-sectional area, ( , )u z t  and 

( , )v z t  are displacements of the flexural center of the cross-
section along the planes Oxz and Oyz owing to bending; E  is 
Young’s modulus, I  is axial moment of inertia, ν  is 
Poisson’s ratio, 0 0,u v  are initial curvatures of the drill string. 

The boundary conditions for the drill string with hinged 
ends are set as equality to zero of deformations and bending 
moments at the ends: 
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Initial conditions are presented in the form: 
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where 1 2,C C  are constant values. 

 

III. NUMERICAL ANALYSIS 
Because of the complexity of direct integration of the 

nonlinear model (3)-(5), it is reduced to a form convenient for 
numerical integration. For this, the known method of 
separation of variables - the Bubnov-Galerkin method is used, 
where the shape of the bend of the drill string axis is given by 
the spectrum of harmonic forms. In [4] has been shown that 
this method allows to successfully analyze the behavior of 
drill strings used for oil production in the vertical and 
deviated wells. Importance of considering inertial forces to 
investigate stability of the drill string when drilling vertical 
holes is also shown there. The convergence of the Bubnov-
Galerkin method for the system is proved in the papers [5]. 

In contrast to [6], we consider the multimode 
approximation of the solution here. The initial curvatures of 
the drill string have a smooth form [7], it can be presented in 
the form of a periodic trigonometric function. Hence, the 
components of transverse displacements ( ),u z t , ( ),v z t and 
initial curvatures 0u , 0v  are presented in the form of series: 
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where basis function sin z
l
π 
 
 

 are chosen so that they 

satisfy the boundary conditions (4). Applying this method to a 
first approximation 1n = , the dynamic model taking into 
account the friction force is reduced to the following form: 
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However, it was previously established that taking into 

account only the first form of approximation is insufficient for 
a complete description of the oscillatory process, so numerical 
analysis is carried out for the third approximation of the 
solution of the oscillation model, 3n =  in (6). 

Numerical calculations were carried out at the following 
values of parameters of the duralumin drill string: Young’s 
modulus 50.7 10 MPaE = × , material density 

32700 kg/mρ = , Poisson’s ratio 0.34ν = , outer diameter of 
the string 0.2mD = , inner diameter 0.12md = , length of 
string 100ml = , angular speed 1rad/sω = , longitudinal 

compressive load ( ) 35.23 10 NN t = × and twisting moment 

( ) ( )410 cos N×mM t tω= . The data for the value ε  is taken 
from [8]-[10]. 

Fig. 1-2 show the influence of frictional force on the 
oscillating process of a duralumin drill string. A comparison 
of models of drill strings vibrations with and without 
consideration of frictional forces is made (Fig. 1) and there 
was obtained the influence of frictional forces on oscillation 
process. It is established that taking friction into account leads 
to a decrease in the amplitude of vibrations of the drill strings, 
and over time the difference between the amplitudes of the 
vibrations increases. However, for smaller coefficients of 
friction this difference is small. An analysis of the influence 
of the friction coefficient on the oscillation process of drill 
strings is also carried out and it is established that for a larger 
value of the friction coefficient the amplitude of the 
oscillations decreases (Fig. 2). 

Fig. 3 analyzes the effect of an external compressive 
longitudinal force on the amplitudes of its vibrations, and it is 
established that the influence of the friction force is not so 
great as the compressive load increases. This is due to the fact 
that as the external load increases, the drilling speed of the 
well also increases. But it is important that the load should not 
go beyond the critical value. 

Figures 4 show the drill string spatial bending forms, 
taking into account the nonlinear frictional force at various 
time moments. The friction coefficient was taken as 0.3ε = , 
other parameters remained unchanged. The shape of the 
bending depends on the chosen number of modes according to 
Bubnov-Galerkin's expansion (6). Three modes of bending 
can be observed and are presented below. 

 

 
(a) 0.3ε =  

 
(b) 0.03ε =  

Fig. 1. Influence of the friction force on the vibrations of the drill string 
( – – – – without friction, –––––– with friction) 
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Fig. 2. Influence of the value of the friction coefficient on the vibrations of the drill string 
(– – – – 0.3ε = , –––– 0.6ε = ) 

 
 

Fig. 3. Influence of the compressive load on the vibrations of the drill string considering the friction force 

(– – – – 45.23 10 NNt = × , –––– 35.23 10 NNt = × ) 

 

                              
 

a) 8.58t sm =
                                                       

b) 16.86t sm =
                                                      

c) 22t sm =
 

 
Fig. 4. Spatial bending forms of the drill string considering the friction force 
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IV. RESONANCE 
Deformation finiteness in (3) leads to a nonlinearity of 

dynamic model and can make essential impact on character of 
movement of drill string such as the imposition of vibration 
process on the nominal condition of the drill string, change of 
amplitude-frequency response, and, as a consequence, the loss 
of the dynamic stability of the rod, as well as the appearance 
of dangerous resonant modes of vibration. Resonances are 
accompanied by large vibration amplitudes, which 
significantly weakens the strength characteristics of the 
considering system. Therefore, it becomes necessary to study 
resonant modes of drill string vibrations at multiple 
frequencies in order to exclude them from the operating 
frequency area. 

In contrast to [11], [12] in the present work resonant 
vibrations of drill string considering the friction forces are 
investigated.  

Examination of resonant regimes of movement of the drill 
string and its stability can be reduced to analysis of the 
amplitude-frequency characteristics of their transverse 
vibrations. In nonlinear system along with vibrations, which 
frequency coincides with frequency of the external force, 
higher and subharmonic oscillations can arise [13]. In the 
resonance case difference of phases between natural vibrations 
and external effects may have a great impact on the magnitude 
of amplitudes and the frequency of vibrations. 

Introducing a dimensionless time parameter τ , the 
nonlinear model (3) reduces to the form: 
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0ω  is the frequency of the drill string natural vibrations. 

The general method to solve such system is expansion of 
the functions 1 1( ), ( )u vτ τ  into the Fourier series with 
undefined coefficients [14]: 
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which can be determined by the method of harmonic balance 
when taking into account the finite and usually a small number 
of members. 

Considering the resonance on the basic frequency a 
solution of (9) can be approximated by a simple harmonic 
with frequency Ω : 
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On substituting (10) into (8) and applying the method of 

harmonic balance [15], the following system of equations 
defining the dependence between the amplitudes 

1 1
,u vr r  and 

the frequency Ω : 
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The amplitude-frequency characteristics (11) depend on 

geometrical and physical parameters of the dynamic system. It 
allows examining the effects of these parameters on the 
resonance regimes of the drill string external vibrations to 
separate the resonant frequencies from drilling operating 
frequencies or to control them. 

Fig. 5 shows the influence of the friction force and the 
effect of the friction coefficient (Fig. 6) on the resonance 
modes of the duralumin drill strings vibrations at the basic 
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frequency. It is established that taking into account the friction 
force leads to the extinction of the resonance curve, and an 
increase in the coefficient of friction reduces the amplitude of 
the oscillations and narrows the band of non-operating 
frequencies. All resonant curves stretch out to the right 
because of existence of geometrical nonlinearity in the system; 
meanwhile, shifting of the resonances curves towards the 
growth of external vibration frequency Ω  takes place due to 
the initial curvature of the drill string axis. 

According the bifurcation of amplitude-frequency 
response, pronounced on the presented figures, the instability 
zone of the basic resonance corresponding the frequencies of 
the external load can be determined. 

Numerical calculations were carried out at the following 
values of parameters of the duralumin drill string: outer 

diameter of the string 0.168mD = , inner diameter 
0.12md = , length of string 100ml = , angular speed 
5rad/minω = , longitudinal compressive load 

3
0 0.7 10 N,N = ×  

42.3 10 N,tN = × and the values of initial 
curvatures 0 00.05, 0.05.u v= =  Coefficients of friction was 
varying. 

To verify the reliability of the obtained results and the 
developed amplitude-frequency characteristics, it is necessary 
to linearize the nonlinear model (3). The linearization of the 
model with respect to the finite deformation led to the known 
curves of the amplitude-frequency characteristics of linear 
oscillations, which confirms the reliability of the studies 
(Fig.7). 

 
 

 
 

 
Fig. 5. Influence of the friction force on the basic resonance 
(–––––– without friction,                with friction 0.08ε = ) 

 
 

 
a) (––––– 0.3ε = ,              0.6ε = ) 

 
b) (––––– 0.03ε = ,              0.06ε = ) 

 
Fig. 6. Influence of the coefficient of friction on the basic resonance 
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Fig. 7. Linearization of the model of the drill strings movement considering the friction force 
 
It is known that in nonlinear systems, in addition to 

vibrations with a frequency equal to the frequency of the 
external force, higher harmonic vibrations may arise. For a 
more complete analysis of the resonant phenomena, a third 
harmonic term is added to the basic harmonic. It was 
previously established that the second harmonic is not 
captured for systems with geometric nonlinearity, so the term 
with the second harmonic is omitted. Then an approximate 
solution of (9) can be represented in the form: 
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Similar equations were obtained for the second component 

of transverse vibrations, where the amplitudes of the 
oscillations are expressed by 

1 3
,v vr r . Thus, the system of 4 

equations with unknowns
1 3 1 3
, , ,u u v vr r r r  and the frequency Ω  

is obtained. By solving this system with respect to unknowns, 
amplitude-frequency characteristics can be found for the 
resonance at higher frequencies. Numerical analysis is 
presented in the following Fig. 8-11. 

The results of the investigations for steel and duralumin 
drill strings are shown in Fig. 8. It is established that in the 
case of resonance at higher frequencies of the duralumin drill 
string, its amplitude-frequency characteristics has larger 
values than for the steel string. This suggests that the 
duralumin drill string is subject to smaller deviations from the 
rectilinear form than the steel one under the same drilling 
conditions, which significantly improves its dynamic and 
strength characteristics. There is a "dragging" of the 
amplitude-frequency characteristic to the region of high 
frequencies. That is, in the case of duralumin rods, resonance 
should be expected at high frequencies. In addition, along with 
the basic resonance, a third harmonic resonance arises. For the 
case of duralumin rods, the bifurcation of the amplitude-
frequency characteristics is more pronounced. 

As a result of the research, the energy of the basic 
resonance is transferred to the third harmonic resonance. Its 
amplitude reaches critical values, which is characteristic of 
strongly nonlinear systems. 

In Fig. 9-10, the influence of the length of the steel drill 
rod on the resonance modes of their vibrations is investigated. 
It is established that as the length of the strings increases, their 
frequency response is shifted to a zone of lower frequencies, 
and resonance should be expected at earlier frequencies than 
for drill strings of shorter lengths. 
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(a) steel drill string                                                      (b) duralumin drill string 
 

Fig. 8. Resonance curves of the first (                 ) and third (          ) harmonic vibrations of drill strings of different materials 
 
 

              
 

(a) 200l m=                                               (b) 150l m=  
 

Fig. 9. Resonance curves of the first (                 ) and third (          ) harmonic vibrations of drill strings of different materials 
 
 

 
 

Fig. 10. Resonance curves of the first and third harmonic vibrations of drill strings of different lengths 
(              500ml = ,               300ml = )  
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Fig. 11. Comparison of linear (– · – · – ·) and nonlinear (––––––) models of drill strings movement 

 
 

As before, to confirm the validity of solutions of 
nonlinear problems, they were tested by their linear cases 
obtained as a result of linearization of the obtained models. 
For this purpose, a comparative analysis of the amplitude-
frequency responses of the nonlinear model (3) and its 
particular linear case was done (Fig. 11). In the study of 
resonance modes of vibration, the linearization of the 
nonlinear model with respect to the finite deformation leads 
to the absence of a third harmonic in the oscillatory process. 
And according to the first harmonic, the known amplitude-
frequency characteristic of linear oscillations is obtained. 
All this confirms the reliability of the studies. 

By the bifurcations of the amplitude-frequency 
characteristics, which are clearly expressed in the presented 
graphs, it is possible to determine the zone of resonance 
instability at the corresponding external impact frequencies. 
A more complete analytical representation of the instability 
zones of resonance phenomena is carried out below. 
 

V. STABILITY ZONES 
Stability of the given modes of the drill string movement 

has a fundamental importance for ensuring its troubleproof 
operation. The steady movement of a drill string is 
understood as its movement in the absence of the dangerous 
resonance modes of fluctuations. For this, the stability of the 
basic resonance is investigated. 

If, with an unlimited increase in time, all the solutions of 
the system remain in the neighborhood of the solution 
corresponding to the equilibrium state, then the system and 
the solution are stable. Otherwise, when the values of the 
variables go away from their initial values with 
increasing τ , the system is considered unstable. 

The stability problem of a periodic solution of the model 
(8) is investigated here. Considering the periodic solution as 

( ) ( )0 0,u vτ τ
 
and let the small variation ,u vδ δ , the 

solution of (8) ( ) ( )1 1,u vτ τ
 
will be presented in the next 

form: 
 

( ) ( )

( ) ( )

1 0

1 0

,

.

u u u

v v v

τ τ δ

τ τ δ

= +

= +

 (14) 

 
The stability of the solutions ( ) ( )0 0,u vτ τ  depend on 

the behavior of the small deviations ,u vδ δ  in time as 
follows [16]: the solutions ( ) ( )0 0,u vτ τ  is considered 
unstable if the magnitudes ,u vδ δ  unrestrictedly increase at 
τ → ∞ ; and the solutions ( ) ( )0 0,u vτ τ  is considered stable 
if ,u vδ δ  are restricted at τ → ∞ . 

The case of the basic resonance (10) is examined there. 
The equations of the perturbed state for the considered case 
of Hill type is received: 

 

( )

( )

2
2 4

1 0 2 02

2
0 0cos 3 2 0,

d u d v d uA F u F u
d d d

A K Bu Dv v u

δ δ δ
τ τ τ

τ δ δ

+ + + +

+ + Ω + + =
  

 (15) 

( )

( )

2
2 4

1 0 2 02

2
0 0cos 3 2 0.

d v d u d vA F v F v
d d d

A K Bv Du u v

δ δ δ
τ τ τ

τ δ δ

− + + +

+ + Ω + + =
 

 
Behavior character of the solutions (15) indicates 

stability or instability of the basic resonance according to 
Lyapunov. 

Setting the variations ,u vδ δ  in the form of a spectrum 
of oscillations [16] according to Floquet theory: 

 
( )

( )

1 1

1 1

cos ,

cos ,

u e b

v e b

ητ

µτ

δ τ ψ

δ τ ψ

= Ω −

= Ω −

 (16) 

 
where ,η µ  are the characteristic indexes. 

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION Volume 11, 2017 

ISSN: 1998-0159 155



Applying the method of harmonic balance, the 
characteristic determinants are defined, which sets the 
borders of the first instability zone of the basic resonance: 

 

( ) ( )

( )( )

1

1 1

24 2 4

22 2 2
31

270 1 2
16

3 1 0,

u

u u

B D r

B D r A F r

η∆ = = +Ω − Ω + + +

 + + −Ω + Ω+ Ω = 

 

 (17) 

( ) ( )

( )( )

1

1 1

24 2 4

22 2 2
32

270 1 2
16

3 1 0.

v

v v

B D r

B D r A F r

µ∆ = = +Ω − Ω + + +

 + + −Ω + Ω+ Ω = 

 

 
Numerical analysis of the basic resonance instability 

zones of the nonlinear dynamic system (8), based on the 
amplitude-frequency relations (17) is obtained above at Fig. 
12-16. Calculations were carried out using the same 
parameters of the drill string as at analysis of resonance, 
angular speed 0.5rad/sω = , a friction coefficient 0.8ε = ,  
longitudinal compressive load at Fig. 13 

3 4
0 0.7 10 N, 2.3 10 N,tN N= × = ×  at Fig. 14-15 

3 5
0 0.7 10 N, 2.3 10 NtN N .= × = × . 
Figure 12 examines the effect of taking into account the 

Coriolis force and the friction force in the model of the drill 
string vibrations on the instability zones at the basic 
frequency. The comparative analysis of two models with 
and without the Coriolis force and friction force is carried 
out. It is established that in the second case, the instability 
zone of the basic resonance begins with a zero amplitude 
and originates at the point 1Ω = . In the model considering 
frictional forces, the instability zone does not reach the zero 
amplitude, and is rounded off before reaching the axis. At 
that case resonance should be expected at higher 
frequencies. 

Further, the effect of the friction force on the stability 
zones of the basic resonance for different cases of external 
loading is investigated (Fig. 13-14). It is established that 
consideration the friction force shifts the instability zone of 

the basic resonance to the region of high frequencies. 
However, this shifting occurs at large friction coefficients 
( 0.6ε > ). At small coefficients, which were considered 
earlier, the influence of the nonlinear friction force is not so 
significant. It is also confirmed in Fig. 15 where influence of 
value of the friction coefficient on the instability zone of the 
basic resonance is investigated. Only an insignificant shift in 
the resonance instability zone is noticeable with an increase 
in the friction coefficient. 

In Fig. 13-14, the studies were carried out at the same 
parameters, and only the magnitude of the external load was 
changed. It is noted that an increase in the external load 
leads to a shift in the instability zone of the basic resonance 
to the region of lower frequencies. Those, resonance should 
be expected at earlier frequencies. This shifting is typical 
both for the model taking into account the friction force, and 
for the model without taking it into account. 

The influence of the length of the drill string on the 
stability of the basic resonance is investigated (Fig. 16). It is 
established that as the length increases, the instability zone 
of the basic resonance shifts to the region of high 
frequencies. An increase in the amplitude-frequency 
characteristics of the drill string is also observed. There is 
also an expansion of the instability zone, which significantly 
reduces the zone of operating frequencies. 

Just as before, in order to confirm the correctness of the 
obtained results, the zones of instability of the basic 
resonance and resonance curves at the basic frequency are 
superimposed at the same parameters and technical 
characteristics of the duralumin drill strings and the same 
external loads acting on it, taking into account friction 
forces (Fig. 17). The zones of instability of the basic 
resonance completely cover the undesirable working region, 
obtained as a result of numerical analysis of the resonance 
modes of vibration. All this also validates the received 
results. 

Thus, obtained here amplitude-frequency responses 
determinate the instability zone of the basic resonance 
allows to avoid non-working resonance frequencies at the 
early stage of drilling wells. 

 
 

 
 

Fig. 12. Influence of Coriolis force and friction force on the instability zones 
(– – – – without, –––––– with their considering) 

 

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION Volume 11, 2017 

ISSN: 1998-0159 156



 
 

Fig. 13. Influence of the friction force on the instability zones at 
42.3 10 NtN = ×   (–  –  –  without, ––––– with friction) 

 

 
 

Fig. 14. Influence of the friction force on the instability zones at 
52.3 10 NtN = ×   (–  –  –  without, ––––– with friction) 

 

 
 

Fig. 15. Influence of the friction coefficient on the instability zones 
(–  –  –  0.7ε = , ––––– 0.8ε = ) 

 

 
 

Fig. 16. Influence of the drill strings lengths on the instability zones 
(–  –  –  – 200ml = , ––––– 150ml = , - - - - 100ml = ) 

 

 
 

Fig. 17. Curve of the resonance on the basic frequency and its zone of instability 
 
 

VI. CONCLUSION 
According to the results of the research, it is possible to 

see the influence of the frictional force between the drill rod 
and the borehole, between the drilling tool and the borehole 
on the deviation the drill string from its rectilinear form 
during drilling. An increase in the coefficient of friction leads 

to a decrease in the amplitude of the drill strings vibrations, 
but the frequency of the oscillations does not change and, on 
the whole, the nature of the oscillations remains unchanged. 
That is, with an increase in the friction coefficient, the 
oscillatory process is more damped. The consideration of 
friction forces leads to a decrease in the amplitudes of 
transverse vibrations and to a weakening of resonance 
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oscillations with a narrowing of the zone of dangerous 
frequencies. By increasing the magnitude of the external 
compressive load, it is possible to overcome the friction 
forces, while increasing the drilling speed of the well. 

Revealed here nonlinear effects are out of the linear theory 
of vibrations. Therefore, the development and research of 
nonlinear models of shallow drilling strings for the finite 
deformation has a fundamental nature. 

As a result of studies of the nonlinear model of drill string 
vibrations, the appearance of a resonance at the third 
frequency is established, which introduces qualitative and 
quantitative changes in the oscillation process. This 
phenomenon occurs at certain frequencies due to the 
"dragging" of the energy of the oscillatory process at the basic 
frequency into the oscillatory process at higher frequencies. 
There is a loss of stability of the basic resonance. In places of 
its bifurcation the amplitude-frequency characteristics of the 
third harmonic resonance are observed. This fact confirms the 
appearance of resonance at higher frequencies in nonlinear 
systems with a stiff characteristic. 

As a result of modeling and analysis of the drill strings 
dynamic stability, it was established that taking into account 
the nonlinear frictional force leads to a narrowing of the 
instability zones of the basic resonance, and an increase in the 
coefficient of friction leads to a further narrowing of these 
zones. Qualitative and quantitative agreement of the stability 
zones of the resonance on the basic frequency with obtained 
in this work bifurcation zones on the resonant amplitude-
frequency characteristics, was also established. 

Modeling of resonance regimes of the drill string 
dynamics along with the analysis of its stability has a great 
importance for development of drilling equipment and 
improving its dynamic characteristics. In doing so, it is 
essential to take into account the geometrical nonlinearity of 
the system and the frictional force between the drill rod and 
the borehole. 

Despite the fact that the proposed methods were used to 
study the stability of the basic resonance of elastic dynamical 
systems, they can also be successfully applied to analyze the 
stability of resonances at higher frequencies. 
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